JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 25, No. 3, August 2012

ON CHARACTERIZATIONS OF CONTINUOUS DISTRIBUTIONS BY CONDITIONAL EXPECTATIONS OF UPPER RECORD VALUES

HYUN-WOO JIN* AND MIN-YOUNG LEE**

ABSTRACT. In this paper, general classes of continuous distributions are characterized by considering the conditional expectations of functions of upper record statistics. The specific distribution considered as a particular case of the general class of distribution are Exponential, Exponential Power(EP), Inverse Weibull, Beta Gumbel, Modified Weibull(MW), Weibull, Pareto, Power, Singh-Maddala, Gumbel, Rayleigh, Gompertz, Extream value 1, Beta of the first kind, Beta of the second kind and Lomax.

1. Introduction

Let $\{X_n, n \ge 1\}$ be a sequence of independent identically distributed (i.i.d.) random variables with cumulative distribution function (cdf) F(x) and probability density function (pdf) f(x). Let $Y_n = max\{X_1, X_2, \dots, X_n\}$ for $n \ge 1$. We say X_j is an upper record value of this sequence, if $Y_j > Y_{j-1}$ for j > 1. By definition, X_1 is an upper record value. The indices at which the upper record values occur are given by the record times $\{U(n), n \ge 1\}$, where $U(n) = min\{j \mid j > U(n-1), X_j > X_{U(n-1)}, n \ge 2\}$ with U(1) = 1. We assume that all upper record values $X_{U(i)}$ for $i \ge 1$ occur at a sequence $\{X_n, n \ge 1\}$ of i.i.d. random variables.

Lee(2003) showed that $X \in PAR(\theta)$ if and only if $(\theta + 1)^i E[X_{U(n+i)} | X_{U(m)} = y] = \theta^i E[X_{U(n)} | X_{U(m)} = y]$ for $i = 1, 2, 3, n \ge m + 1$.

Received March 22, 2012; Accepted June 20, 2012.

²⁰¹⁰ Mathematics Subject Classification: Primary 62E10, 62E15.

Key words and phrases: absolutely continuous, characterizations, independent and identically distributed, continuous distribution, upper record values, conditional expectations.

Correspondence should be addressed to Min-Young Lee, leemy@dankook.ac.kr.

Also, Faizan, Khan and Haque(2010) showed that

$$E[h(X_{U(s)}) - h(X_{U(r)}) \mid X_{U(m)} = x] = (s - r)c$$

if and only if $\overline{F}(x) = e^{-\frac{(h(x))}{c}}$, c > 0, where h(x) is a monotonic and differentiable function of x and $m \le r < s$.

In this paper we will give characterizations of the continuous distributions by using equivalence between the adjacent conditional expectations of upper record values.

2. Main results

THEOREM 2.1. Let X be an absolutely continuous random variable with the cdf F(x) and the pdf f(x) on the support (α, β) , where α and β may be finite or infinite. Then, for a > 0, k > 0,

(2.1)
$$(a+1)E[(g(X_{U(n+1)}))^k \mid X_{U(m)} = y]$$
$$= aE[(g(X_{U(n)}))^k \mid X_{U(m)} = y]$$

if and only if

(2.2)
$$F(x) = 1 - (g(x))^{ak},$$

where g(x) is a monotonic and differentiable function of x such that $g(x) \to 1$ as $x \to \alpha$ and $g(x) \to 0$ as $x \to \beta$.

Proof. For the necessity part, it is easy to see that (2.2) implies (2.1).

For the sufficiency part, using Ahsanullah formula (1995), we get the following equation

$$\frac{a+1}{1-F(y)} \int_{y}^{\infty} \frac{1}{(n-m)!} \left(ln \frac{1-F(y)}{1-F(x)} \right)^{n-m} (g(x))^{k} f(x) dx$$
$$= \frac{a}{1-F(y)} \int_{y}^{\infty} \frac{1}{(n-m-1)!} \left(ln \frac{1-F(y)}{1-F(x)} \right)^{n-m-1} (g(x))^{k} f(x) dx.$$

Since F(x) is absolutely continuous, we can differentiate (n - m + 1) times both sides of (2.3) with respect to y and simplify to obtain the following equation

(2.4)
$$\frac{-f(y)}{1-F(y)} = \frac{ak(g(y))^{k-1}g'(y)}{(g(y))^k}$$

502

Integrating both sides of (2.4) with respect to y, we get $F(y) = 1 - (g(y))^{ak}$. Hence, the theorem is proved.

REMARK 2.2. A number of distributions can be characterized by a proper choice of ak and g(x).

Distribution	F(x)	ak	g(x)
Exponential	$1 - e^{-\lambda x}, \ 0 < x < \infty$	$ak = \lambda$	e^{-x}
Weibull	$1 - e^{-\lambda x^p}, \ 0 < x < \infty$	$ak = \lambda$	e^{-x^p}
Pareto	$1 - x^{-\lambda}, \ 1 < x < \infty$	$ak = \lambda$	x^{-1}
Beta 1st kind	$1 - (1 - x)^{\lambda}, \ 0 < x < 1$	$ak = \lambda$	(1 - x)
Beta 2nd kind	$1 - (1+x)^{-\lambda}, \ 0 < x < \infty$	$ak = \lambda$	1/(1+x)
Beta Gumbel	$1 - (1 - exp[-e^{-x}])^{\lambda}$	$ak = \lambda$	$1 - exp[-e^{-x}]$
	$-\infty < x < \infty$		
Lomax	$1 - (1 + \frac{x}{\alpha})^{-1}, \ 0 < x < \infty$	ak = 1	$1/(1+\frac{x}{\alpha})$
Singh-Maddala	$1 - (1 + \theta x^p)^{-\lambda}, \ 0 < x < \infty$	$ak = \lambda$	$1/(1+\theta x^p)$
Kappa	$\frac{x^p}{\lambda + x^p}, \ 0 < x < \infty$	ak = 1	$\frac{\lambda}{\lambda + x^p}$
Gompertz	$1 - exp[-\frac{\lambda}{\mu}(e^{\mu x} - 1)]$	ak = 1	$\frac{\frac{\lambda}{\lambda+x^p}}{exp[-\frac{\lambda}{\mu}(e^{\mu x}-1)]}$
	$0 < x < \infty$		
Rayleigh	$1 - exp[-2^{-1}\theta^{-2}x^2]$	ak = 1	$exp[-2^{-1}\theta^{-2}x^2]$
	$0 < x < \infty$		
MW	$1 - exp[-\lambda x^{\alpha} e^{\beta x}], \ 0 < x < \infty$	$ak = \lambda$	$exp[-\lambda x^{\alpha}e^{\beta x}]$
EP	$1 - exp[1 - e^{x^{\beta}}], \ 0 < x < \infty$	ak = 1	$exp[1-e^{x^{\beta}}]$
Extream value I	$1 - exp[-e^x], \ -\infty < x < \infty$	ak = 1	$exp[-e^x]$
Gumbel	$exp[-e^{-x}], -\infty < x < \infty$	ak = 1	$(1 - exp[-e^{-x}])$

TABLE 1. Examples based on the cdf $F(x) = 1 - (g(x))^{ak}$

THEOREM 2.3. Let X be an absolutely continuous random variable with the cdf F(x) and the pdf f(x) on the support (α, β) , where α and β may be finite or infinite. Then, for k > r > 0,

(2.5) $E[(g(X_{U(n+1)}))^k \mid X_{U(m)} = y] = E[(g(X_{U(n)}))^{k-r} \mid X_{U(m)} = y]$ if and only if

(2.6)
$$F(x) = 1 - \left(1 + \frac{1}{(g(x))^r}\right)^{-\left(\frac{k}{r} - 1\right)}$$

where g(x) is a monotonic and differentiable function of x such that $1/(g(x))^r \to 0$ as $x \to \alpha$ and $1/(g(x))^r \to \infty$ as $x \to \beta$.

Proof. For the necessity part, it is easy to see that (2.6) implies (2.5). For the sufficiency part, we get

$$(2.7) = \frac{1}{1 - F(y)} \int_{y}^{\beta} \frac{1}{(n - m)!} \left(ln \frac{1 - F(y)}{1 - F(x)} \right)^{n - m} (g(x))^{k} f(x) dx = \frac{1}{1 - F(y)} \int_{y}^{\beta} \frac{1}{(n - m - 1)!} \left(ln \frac{1 - F(y)}{1 - F(x)} \right)^{n - m - 1} (g(x))^{k - r} f(x) dx.$$

Since F(x) is absolutely continuous, we can differentiate (n - m + 1)times both sides of (2.7) with respect to y and simplify to obtain the following equation

(2.8)
$$\frac{-f(y)}{1-F(y)} = \frac{(k-r)(g(y))^{-r-1}g'(y)}{1+(g(y))^{-r}}$$

Integrating both sides of (2.8) with respect to y, we get F(y) = $1 - (1 + \frac{1}{(g(y))^r})^{-(\frac{k}{r}-1)}$, for k > r > 0.

Hence, the theorem is proved.

Distribution F(x)k, r1/(g(x)) $1 - e^{-\lambda x}$, Exponential $0 < x < \infty$ $\frac{k}{k} - 1 = \lambda$ $e^{x} - 1$ $\frac{1-e^{-\lambda x^{p}}}{1-e^{-\lambda}}, \quad 0 < x < \infty$ $\frac{1-e^{-\lambda}}{1-x^{-\lambda}}, \quad 1 < x < \infty$ $e^{x^p} - 1$ \underline{k} Weibull $-1 = \lambda$ $\frac{r}{k}$ $-1 = \lambda$ Pareto x - 1 $1 - (1+x)^{-\lambda}$ $-1 = \lambda$ Beta 2nd kind x $0 < x < \infty$ $1 - (1 + \frac{x}{a})^{-1}$ $\frac{k}{r}$ $\frac{x}{a}$ $-1 = \lambda$ Lomax $0 < x < \infty$ $1 - (1 + \theta x^p)^{-1}$ $\frac{k}{r} - 1 = \lambda$ θx^p Singh-Maddala $0 < x < \infty$ ΕP $1 - exp[1 - e^x]$ $\frac{k}{r} = 2$ $exp[-1+e^{x^{\beta}}]-1$ $0 < x < \infty$ $1 - exp[-\frac{\lambda}{\mu}(e^{\mu x} - 1)]$ $exp[\frac{\lambda}{\mu}(e^{\mu x}-1)]-1$ $\frac{k}{r} = 2$ Gompertz $0 < x < \infty$ $1 - exp[-2^{-1}\theta^{-2}x^2]$ Rayleigh $\frac{k}{r} = 2$ $exp[2^{-1}\theta^{-1}]$ -1 $0 < x < \infty$ $1 - exp[-\lambda x^{\alpha}e^{\beta x}]$ MW $\frac{k}{r} = 2$ $exp[\lambda x^{\alpha}e^{\beta x}] - 1$ $0 < x < \infty$ $\frac{k}{r} = 2$ Extream value I $1 - exp[-e^x]$ $exp[e^x] - 1$ $-\infty < x < \infty$

TABLE 2. Examples based on the cdf $F(x) = 1 - (1 + \frac{1}{(g(x))^r})^{-(\frac{k}{r}-1)}$

REMARK 2.4. A number of distributions can be characterized by a proper choice of k, r and g(x).

References

- [1] M. Ahsanullah, Record Statistics, Inc, Dommack NY, 1995.
- [2] M. Faizan & M. I. Khan & Z. Haque, Characterization of continuous distributions through record statistics, Commun. Korea Math. soc. 25 (2010), 485-489.
- [3] M.Y. Lee, Characterizations of the pareto distribution by conditional expectations of record values, Commun. Korea Math. soc. 18 (2003), 127-131.
- [4] A. I. Shawky & R. A. Bakoban, Conditional expectation of certain distributions of record values, Int. J. Math. Analysis 17 (2009), 829-838.

*

Department of Mathematics Dankook University Cheonan 330-714, Republic of Korea *E-mail*: hwjin@dankook.ac.kr

**

Department of Mathematics Dankook University Cheonan 330-714, Republic of Korea *E-mail*: leemy@dankook.ac.kr